With IFS Cycle 48r1, the horizontal resolution of the medium-range ensemble (ENS) will increase from 18 to 9 km. This will bring the ENS to the same horizontal resolution as the high resolution forecast (HRES). The vertical resolution for both ENS and HRES will remain at 137 model levels and the ENS will continue to have 51 members.
Cycle 48r1 will also bring a major upgrade to the configuration of the extended-range ensemble (ENS extended): Rather than being an extension of the medium-range forecasts starting twice a week at day 15 it will be a completely separate system, running daily from 00 UTC out to day 46 with 101 members. Over the entire forecast range the resolution will remain unchanged at 36 km horizontally and 137 model levels.
As a result of these configuration changes Cycle 48r1 will offer two sets of re-forecasts (=hindcasts), one for the medium range and one for the extended range.
This major upgrade to Cycle 48r1 is currently planned for 13 June 2023 (target date) and will be the first new scientific model upgrade to run in ECWMF's new Data Centre in Bologna.
The information presented on this page is subject to further change. To get notified about any updates please "watch" this page (requires to log in).
For any questions or issues please contact us via the Support Portal.
Implementation scheduled for 13 June 2023 (target date). The Release Candidate Phase started on 14 March. An update of the e-suite is planned for release in the coming weeks due to the correction of legacy impacts on surface fields of the bug described below. In the meantime, users are encouraged to use the test data, prior to correction, to familiarise themselves with the new dataflows and formats from a technical point of view. As usual, any test data provided may not be complete and should not be used commercially or in service provision until the cycle is operational. Test data is provided for technical testing, evaluation and planning purposes only. |
#IFS48r1 #newfcsystem @ECMWF
News
Change to default choice of packing type in dissemination from 00 UTC run 21/3/2023 Open test data available, availability of other test data specified Recording of webinar "Cycle 48r1: Verification, products and technical aspects" published Start of Release Candidate Phase, updates on meteorological impact, CCSDS compression and available test data Recording of webinar "Introduction to Cycle 48r1" published
|
HRES (day 1-10)
ENS (day 1-15)
ENS extended (day 1-46)
HRES-WAM (day 1-10)
ENS-WAM (day 1-15)
ENS-WAM extended (day 1-46)
Resolutions in bold increased/changed from previous IFS cycle.
Component | Horizontal resolution | Vertical resolution | ||
Atmosphere | HRES | O1280 | ~9 km | 137 |
ENS | O1280 | ~9 km | 137 | |
ENS extended | O320 | ~36 km | 137 | |
Wave | HRES-WAM | 0.125° | ~14 km | - |
ENS-WAM | 0.125° | ~14 km | - | |
ENS-WAM extended | 0.5° | ~55 km | - | |
Ocean | NEMO 3.4 | 0.25° | ~28 km | 75 |
Improved tropospheric upper air variables, around 1% to 3%
Improved stratospheric winds and some degradations of stratospheric temperatures due to increased biases.
Arctic and Antarctic scores improved.
Upper air ensemble spread reduced in the midlatitudes (around 1% to 2%) but mainly increased in the tropics (around 2% to 3%). Ensemble spread of surface variables increased (around 2% to 6%).
Improved TC track and intensity forecasts, with position errors reduced by ca. 10% and core pressure errors reduced by around 20%.
ENS | ENS Extended | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00/06/12/18 daily | 00/06/12/18 daily | 00 Mon/Thu | 00 daily |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
MARS Stream | enfo | enfo | enfo | eefo |
Spectral | TCO639 | TCO1279 | TCO639 / TCO319 | TCO319 |
Gaussian grid | O640 | O1280 | O640 / O320 | O320 |
Horizontal grid resolution | ~18 km | ~9 km | ~18 km / ~36 km | ~36 km |
Dissemination (LL) | 0.2° | 0.1° | 0.2° / 0.4° | 0.4° |
Model Level vertical resolution | 137 | 137 | 137 | 137 |
Ensemble members | 50+1 | 50+1 | 50+1 | 100+1 |
ENS extended will be produced with constant resolution from step 0. Therefore the overlap stream efov is no longer needed and will be discontinued.
ENS hindcast | ENS Extended hindcast | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
MARS Stream | enfh | enfh | enfh | eefh / eehs |
Spectral | TCO639 | TCO1279 | TCO639 / TCO319 | TCO319 |
Gaussian grid | O640 | O1280 | O640 / O320 | O320 |
Horizontal grid resolution | ~18 km | ~9 km | ~18 km / ~36 km | ~36 km |
Dissemination (LL) | 0.2° | 0.1° | 0.2° / 0.4° | 0.4° |
Model Level vertical resolution | 137 | 137 | 137 | 137 |
Ensemble members | 10+1 | 10+1 | 10+1 | 10+1 |
ENS-WAM | ENS-WAM Extended | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00/06/12/18 daily | 00/06/12/18 daily | 00 Mon/Thu | 00 daily |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
Stream | waef | waef | waef | weef |
Latitudinal spacing of the native grid in degrees | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Horizontal grid resolution of the native grid | ~28km | ~14km | ~28km / ~55km | ~55km |
Dissemination (LL) | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Frequencies | 36 | 36 | 36 | 36 |
Directions | 36 | 36 | 36 | 36 |
Ensemble members | 50+1 | 50+1 | 50+1 | 100+1 |
ENS-WAM hindcast | ENS-WAM Extended hindcast | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
Stream | enwh | enwh | enwh | weeh / wees |
Latitudinal spacing of the native grid in degrees | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Horizontal grid resolution of the native grid | ~28km | ~14km | ~28km / ~55km | ~55km |
Dissemination (LL) | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Ensemble members | 10+1 | 10+1 | 10+1 | 10+1 |
The table contains the list of parameters expected to be available with the model implementation. They will be available as part of the test data. With implementation the parameters will be available in MARS and dissemination.
Param ID | Short name | Name | Units | Component & type | GRIB edition | Lev. type | ecCharts |
---|---|---|---|---|---|---|---|
331 | rsn | Snow density | kg m-3 | HRES FC, ENS FC | 2 | sol | TBD |
2381 | tsn | Temperature of snow layer | K | HRES FC, ENS FC | 2 | sol | TBD |
lwcs | Liquid water content in snow pack | kg m-2 | HRES FC, ENS FC | 2 | sol | TBD | |
sd | Snow depth water equivalent | kg m-2 | HRES, ENS FC | 2 | sol | TBD | |
ptype_sev1h | Precipitation type (most severe) in the last 1 hour | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_sev3h | Precipitation type (most severe) in the last 3 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq1h | Precipitation type (most frequent) in the last 1 hour | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq3h | Precipitation type (most frequent) in the last 3 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_sev6h | Precipitation type (most severe) in the last 6 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq6h | Precipitation type (most frequent) in the last 6 hours | - | HRES FC, ENS FC | 2 | sfc | TBD |
1On up to 5 snow levels, in addition to the already produced single level parameter on the surface (levtype=sfc).
2The 1 hour parameters will be available for steps 1-90, the 3 hour parameters for steps 3-144 and the 6 hour parameters from step 6 to the end of the forecast, step 240 for HRES and 360 for ENS.
Precipitation type parameters are using the following subset of WMO table 4.201. For "most-severe" precipitation type parameters the severity is also given, with 0 being the lowest.
Code | Description | Severity |
---|---|---|
0 | No precipitation | 0 |
1 | Rain | 1 |
3 | Freezing rain | 7 |
5 | Snow | 4 |
6 | Wet snow | 5 |
7 | Mixture of rain and snow | 2 |
8 | Ice pellets | 3 |
12 | Freezing drizzle | 6 |
Param ID | Short name | Name | Units | Component & type | GRIB edition | Lev. type | Change with 48r1 |
---|---|---|---|---|---|---|---|
ptype | Precipitation type | - | HRES, ENS, ENS ext FC | 2 | sfc | new code 12 (freezing drizzle) added, see above | |
mxcape6 | Maximum CAPE in the last 6 hours | J kg-1 | HRES, ENS, ENS ext FC | 2 | sfc | uses MUCAPE instead of CAPE | |
mxcapes6 | Maximum CAPES in the last 6 hours | m2 s-2 | HRES, ENS, ENS ext FC | 2 | sfc | uses MUCAPE instead of CAPE | |
capes | Convective available potential energy shear | m2 s-2 | HRES, ENS, ENS ext FC | 1 | sfc | uses MUCAPE instead of CAPE |
With 48r1 mxcape6, mxcapes and capes will be based on MUCAPE rather than the old and physically less correct CAPE.
As the resolution of both medium-range ensemble (ENS) and extended-range ensemble (ENS extended) no longer varies over the forecast period, streams efov, efho, weov and ewho, providing ensemble forecast overlap fields, will be discontinued. Also, ENS model level fields at step 336 will no longer be produced.
The GRIB model identifiers (generating process identification number) for cycle 48r1 will be changed as follows:
GRIB 1 Section 1 Octets | GRIB 2 Section 4 Octets | ecCodes key | Component | Model identifier | |
---|---|---|---|---|---|
47r3 | 48r1 | ||||
6 | 14 | generatingProcessIdentifier | Atmospheric model | 153 | 154 |
6 | 14 | generatingProcessIdentifier | Ocean wave model | 118 | 119 |
While by default all 48r1 gridded GRIB2 data will be disseminated using a CCSDS defined compression method (Data representation template 5.42), MARS will by default write gridded GRIB2 data in CCSDS only if derived from (gridded) CCSDS-packed GRIB2 fields. See below how to override the default behaviour. ecCodes, our encoding/decoding package, uses libaec (Adaptive Entropy Coding Library) which implements a Golomb-Rice coding as defined in the CCSDS recommended standard 121.0-B-3. Users are strongly advised to test that their software applications and data processing chain can handle this new compression method. To handle CCSDS compressed fields from 48r1 with ecCodes, version 2.28.0 or newer is recommended. For a discussion of available GRIB packing methods and the use of compression algorithms see the Technical Memo Impact of GRIB compression on weather forecast data and data-handling applications. |
For gridded data in GRIB 2 format the default packing type will change as follows:
GRIB 2 | ecCodes key | 47r3 | 48r1 |
---|---|---|---|
10-11 | dataRepresentationTemplateNumber (GRIB2 only) | 0 (simple packing) | 42 (CCSDS compression) |
packingType (edition independent) | grid_simple | grid_ccsds |
With 48r1 all gridded GRIB2 "raw" data will use the new CCSDS packing type. The default behaviour for data from dissemination (from 00 UTC run 21/3/2023) and MARS will be as follows:
Input field | MARS output packing type (with keyword grid=... ) | Dissemination output packing type (with keyword grid=... ) |
---|---|---|
GRIB1/GRIB2 gridded | inherited from input | inherited from input |
GRIB1 SH | simple | simple |
GRIB2 SH | simple | CCSDS |
While by default all 48r1 gridded GRIB2 data will be disseminated in CCSDS packing, MARS will by default only write gridded GRIB2 data in CCSDS if derived from (gridded) CCSDS-packed GRIB2 fields.
The default behaviour can be overridden by specifying the packing explicitly, e.g.
grid = 0.1/0.1,
packing = CCSDS
will deliver fields with CCSDS packing for any GRIB2 input field. It will however not be possible to get CCSDS packed fields from GRIB1 input fields. Similarly, if CCSDS compression is not desired when retrieving gridded GRIB 2 fields from MARS or dissemination, simple packing can be requested with keyword
packing = simple
Using ecCodes, already retrieved CCSDS compressed fields can be converted to other packing types. This is how to convert all messages in file ccsds.grib with grid_ccsds as their packingType, and only those, to use simple packing, i.e. what we used before 48r1:
grib_set -r -w packingType=grid_ccsds -s packingType=grid_simple ccsds.grib grid_simple.grib
To compare the statistics of the fields before and after the conversion, the following command could be used:
grib_ls -n statistics ccsds.grib grid_simple.grib
The software packages listed below are recommended for full support for all 48r1 parameters and the new CCSDS compression.
ecCodes 2.28.0
Magics 4.13.0
Metview 5.18.0
On the ECMWF Atos system these packages can be loaded via the module ecmwf-toolbox/2023.01.0.0. Before the implementation software versions compatible with 48r1 will be made the default on ECMWF platforms.
Users are strongly encouraged to test their software applications and data processing chain with the new versions of the various software packages before this change.
The Release Candidate Phase started on 14 March. An update of the e-suite is planned for release in the coming weeks due to the correction of the bug described below. In the meantime, users are encouraged to use the test data, prior to correction, to familiarise themselves with the new dataflows and formats from a technical point of view. Due to a bug in the forecast model, unrealistic amounts of supercooled liquid water could sometimes form in very cold/low humidity environments over parts of Canada, China, Mongolia and Siberia. This results in an increase in precipitating snow in these areas which in turn leads to unrealistic increases in snow depth, which if not corrected, would lead to problems in the melt season in spring. Incorrect snow depth will also adversely affect 2m temperature. In the coming weeks it is planned to fix the bug and reset the snow fields of the e-suite to the values in the current operational suite to avoid future problems with snow melt. Currently the following products are regularly produced:
As usual, any test data provided may not be complete and should not be used commercially or in service provision until the cycle is operational. Test data is provided for technical testing, evaluation and planning purposes only. |
IFS Cycle 48r1 beta test data is available from MARS with E-suite experiment version (expver) 0078 (MARS keywords EXPVER=0078, CLASS=OD):
New streams for the extended-range ensemble
Only users registered with access to MARS will be able to access these test data sets. The data should not be used for operational forecasting. Please report any problems you find with this data via the ECMWF Support Portal.
Cycle 48r1 test data from the release candidate phase (RCP) will be available through the test dissemination system, starting from the 00Z run on . Users with access to ECPDS and the Products Requirements Editor (PREd) can login to the test system at https://xdiss-monitor.ecmwf.int/ and trigger the transmission of test products in the usual manner. To receive the test products, users have to have their firewall open to the relevant ECPDS Data Movers:
INTERNET:
RMDCN:
The IFS Cycle 48r1 test products are available as version number 78 (file names ending with '78') and are intended to be generated shortly behind real-time. The test products will be based on the operational dissemination requirements from . As streams enfo and enfh will no longer provide any products beyond step 360 these requests will be translated to equivalent requests using streams eefo and eefh.
The various streams will be released in stages. At the start of the RCP, HRES, HRES-WAM, ENS and ENS-WAM will be available. All extended range products will become available slightly later, precise date TBC.
Approx. 1 week into the RCP, authorised users will get access to a Products Requirements Editor (PREd) in the test system to edit their requirements for 48r1 test data e.g. to request ENS data in the higher resolution or get daily extended range products.
Please note that in particular changes to the resolution, e.g. requesting ENS data with 0.1° resolution, will have a significant impact on the requested data volumes.
The new parameters of Cycle 48r1 listed above will become available in dissemination after the implementation date.
Any changes made in the test system will not be ported to operations on implementation day. Access to the operational PREd will be closed at 9 UTC on 12 June. Any changes to the operational requirements can be implemented after 10 UTC on 13 June.
Users are strongly advised to check that their software applications and data processing chain can handle the test data.
If you don't have access to the ECPDS system or PREd or should you require any assistance with IFS Cycle 48r1 test dissemination products, please contact us via the Support Portal.
WMO Essential and Additional test data will e made available, date TBA.
Open data test data is now provided regularly at https://xdiss.ecmwf.int/ecpds/home/opendata/. Please note that all fields are provided as CCSDS compressed GRIB2. Users are strongly advised to check that their software applications and data processing chain can handle the test data.
Layers from IFS cycle 48r1 will become gradually available in ecCharts with the aim to have the complete set of layers in the release candidate mode one month before implementation. Cycle 48r1 layers are identified by the label "0078" in their title and a black border around test data layers for better visual identification.
The ENS meteograms based on IFS cycle 48r1 test data are expected to become available shortly after the start of the release candidate phase, TBC. They can be viewed by selecting the "IFS cycle 48r1" model run in the ENS meteograms interface.
During the Release Candidate Phase users of the "Simple time-critical jobs" framework can test that their scripts will work with the IFS Cycle 48r1 test data by using the limited ECaccess 'events' set up for this purpose:
4303 | e_ms096 | At this stage, the e-suite step 096 (HRES-BC) has been generated. |
1634 | e_ms144 | At this stage, the e-suite step 144 (ENS-BC) has been generated. |
1635 | e_ms240 | At this stage, the e-suite step 240 (HRES) has been generated. |
1636 | e_ms360 | At this stage, the e-suite step 360 (ENS) has been generated. |
4302 | ef00h360ref | At this stage, the medium-range ensemble reforecast products have been updated. |
4300 | ext00h1104 | At this stage, the Extended Ensemble Forecast products have been updated. |
4301 | ext00h1104ref | At this stage, the Extended Ensemble reforecast products have been updated. |
For these events, MSJ_EXPVER environment variable is set to 0078 and can be used to specify the IFS Cycle 48r1 test data in any MARS retrievals.
These events are intended for testing technical aspects only and should not be used for actual time-critical activities.
Option 2 or 3 time-critical applications can be tested with the IFS Cycle 48r1 test data retrieved from MARS or received in Dissemination.
Webinar "Introduction to Cycle 48r1" | Webinar "Cycle 48r1: Verification, products and technical aspects" | ||
---|---|---|---|
|
|
For any questions, please contact us via the ECMWF Support Portal.