With IFS Cycle 48r1, the horizontal resolution of the medium-range ensemble (ENS) will increase from 18 to 9 km. This will bring the ENS to the same horizontal resolution as the high resolution forecast (HRES). The vertical resolution for both ENS and HRES will remain at 137 model levels and the ENS will continue to have 51 members.
Cycle 48r1 will also bring a major upgrade to the configuration of the extended-range ensemble (ENS extended): Rather than being an extension of the medium-range forecasts starting twice a week at day 15 it will be a completely separate system, running daily from 00 UTC out to day 46 with 101 members. Over the entire forecast range the resolution will remain unchanged at 36 km horizontally and 137 model levels.
As a result of these configuration changes Cycle 48r1 will offer two sets of re-forecasts (=hindcasts), one for the medium range and one for the extended range.
This major upgrade to Cycle 48r1 is currently planned for 13 June 2023 (TBC) and will be the first new scientific model upgrade to run in ECWMF's new Data Centre in Bologna.
The information presented on this page is subject to further change. To get notified about any updates please "watch" this page.
For any questions or issues please contact us via the Support Portal.
Implementation scheduled for 13 June 2023, TBC. The following webinars have been scheduled
Recordings of the webinars will be made available via this page. |
#IFS48r1 #newfcsystem @ECMWF
News
Recording of webinar "Introduction to Cycle 48r1" published Implementation planned for 13 June 2023 (TBC) with Release Candidate Phase starting on 14 March (TBC) Extensive update on implementation scheduled for June 2023. Implementation now planned for Q2 2023. Implementation now planned for Q1 2023. Initial announcement. |
HRES (day 1-10)
ENS (day 1-15)
ENS extended (day 1-46)
HRES-WAM (day 1-10)
ENS-WAM (day 1-15)
ENS-WAM extended (day 1-46)
Resolutions in bold increased/changed from previous IFS cycle.
Component | Horizontal resolution | Vertical resolution | ||
Atmosphere | HRES | O1280 | ~9 km | 137 |
ENS | O1280 | ~9 km | 137 | |
ENS extended | O320 | ~36 km | 137 | |
Wave | HRES-WAM | 0.125° | ~14 km | - |
ENS-WAM | 0.125° | ~14 km | - | |
ENS-WAM extended | 0.5° | ~55 km | - | |
Ocean | NEMO 3.4 | 0.25° | ~28 km | 75 |
ENS | ENS Extended | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00/06/12/18 daily | 00/06/12/18 daily | 00 Mon/Thu | 00 daily |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
MARS Stream | enfo | enfo | enfo | eefo |
Spectral | TCO639 | TCO1279 | TCO639 / TCO319 | TCO319 |
Gaussian grid | O640 | O1280 | O640 / O320 | O320 |
Horizontal grid resolution | ~18 km | ~9 km | ~18 km / ~36 km | ~36 km |
Dissemination (LL) | 0.2° | 0.1° | 0.2° / 0.4° | 0.4° |
Model Level vertical resolution | 137 | 137 | 137 | 137 |
Ensemble members | 50+1 | 50+1 | 50+1 | 100+1 |
As ENS extended will be produced with constant resolution from step 0, overlap fields are no longer required and stream efov will be discontinued.
ENS hindcast | ENS Extended hindcast | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
MARS Stream | enfh | enfh | enfh | eefh / eehs |
Spectral | TCO639 | TCO1279 | TCO639 / TCO319 | TCO319 |
Gaussian grid | O640 | O1280 | O640 / O320 | O320 |
Horizontal grid resolution | ~18 km | ~9 km | ~18 km / ~36 km | ~36 km |
Dissemination (LL) | 0.2° | 0.1° | 0.2° / 0.4° | 0.4° |
Model Level vertical resolution | 137 | 137 | 137 | 137 |
Ensemble members | 10+1 | 10+1 | 10+1 | 10+1 |
ENS-WAM | ENS-WAM Extended | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00/06/12/18 daily | 00/06/12/18 daily | 00 Mon/Thu | 00 daily |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
Stream | waef | waef | waef | weef |
Latitudinal spacing of the native grid in degrees | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Horizontal grid resolution of the native grid | ~28km | ~14km | ~28km / ~55km | ~55km |
Dissemination (LL) | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Frequencies | 36 | 36 | 36 | 36 |
Directions | 36 | 36 | 36 | 36 |
Ensemble members | 50+1 | 50+1 | 50+1 | 100+1 |
ENS-WAM hindcast | ENS-WAM Extended hindcast | |||
---|---|---|---|---|
Current | Upgrade | Current | Upgrade | |
Basetime & frequency | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu | 00 Mon/Thu |
Forecast range | day 1-15 | day 1-15 | day 1-15 / 16-46 | day 1-46 |
Stream | enwh | enwh | enwh | weeh / wees |
Latitudinal spacing of the native grid in degrees | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Horizontal grid resolution of the native grid | ~28km | ~14km | ~28km / ~55km | ~55km |
Dissemination (LL) | 0.25° | 0.125° | 0.25° / 0.5° | 0.5° |
Ensemble members | 10+1 | 10+1 | 10+1 | 10+1 |
The table contains the list of parameters expected to be available with the model implementation. They will be available as part of the test data. With implementation the parameters will be available in MARS and dissemination.
Param ID | Short name | Name | Units | Component & type | GRIB edition | Lev. type | ecCharts |
---|---|---|---|---|---|---|---|
331 | rsn | Snow density | kg m-3 | HRES FC, ENS FC | 2 | sol | TBD |
2381 | tsn | Temperature of snow layer | K | HRES FC, ENS FC | 2 | sol | TBD |
lwcs | Liquid water content in snow pack | kg m-2 | HRES FC, ENS FC | 2 | sol | TBD | |
litoti | Instantaneous total lightning flash density | km-2 day-1 | HRES, ENS, ENS EXT FC | 2 | sfc | TBD | |
sd | Snow depth water equivalent | kg m-2 | HRES, ENS FC | 2 | sol | TBD | |
ptype_sev1h | Precipitation type (most severe) in the last 1 hour | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_sev3h | Precipitation type (most severe) in the last 3 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq1h | Precipitation type (most frequent) in the last 1 hour | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq3h | Precipitation type (most frequent) in the last 3 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_sev6h | Precipitation type (most severe) in the last 6 hours | - | HRES FC, ENS FC | 2 | sfc | TBD | |
ptype_freq6h | Precipitation type (most frequent) in the last 6 hours | - | HRES FC, ENS FC | 2 | sfc | TBD |
1In addition to the single level parameter on the surface (levtype=sfc).
2The 1 hour parameters will be available for steps 1-90, the 3 hour parameters for steps 3-144 and the 6 hour parameters from step 6 to the end of the forecast, step 240 for ENS and 360 for ENS.
Precipitation type parameters are using the following subset of WMO table 4.201. For "most-severe" precipitation type parameters the severity is also given, with 0 being the lowest.
Code | Description | Severity |
---|---|---|
0 | No precipitation | 0 |
1 | Rain | 1 |
3 | Freezing rain | 7 |
5 | Snow | 4 |
6 | Wet snow | 5 |
7 | Mixture of rain and snow | 2 |
8 | Ice pellets | 3 |
12 | Freezing drizzle | 6 |
Param ID | Short name | Name | Units | Component & type | GRIB edition | Lev. type | Change with 48r1 |
---|---|---|---|---|---|---|---|
ptype | Precipitation type | - | HRES, ENS, ENS ext FC | 2 | sfc | contains new code 12 (freezing drizzle), see above | |
mxcape6 | Maximum CAPE in the last 6 hours | J kg-1 | HRES, ENS, ENS ext FC | 2 | sfc | uses MUCAPE instead of CAPE | |
capes | Convective available potential energy shear | m2 s-2 | HRES, ENS, ENS ext FC | 1 | sfc | uses MUCAPE instead of CAP |
As the resolution of both medium-range ensemble (ENS) and extended-range ensemble (ENS extended) no longer varies over the forecast period, stream efov, providing ensemble forecast overlap fields, will be discontinued.
The GRIB model identifiers (generating process identification number) for cycle 48r1 will be changed as follows:
GRIB 1 Section 1 Octets | GRIB 2 Section 4 Octets | ecCodes key | Component | Model identifier | |
---|---|---|---|---|---|
47r3 | 48r1 | ||||
6 | 14 | generatingProcessIdentifier | Atmospheric model | 153 | 154 |
6 | 14 | generatingProcessIdentifier | Ocean wave model | 118 | 119 |
All gridded 48r1 model output in GRIB 2 will by default be encoded using a CCSDS defined compression method (Data representation template 5.42). ecCodes, our encoding/decoding package, uses libaec (Adaptive Entropy Coding Library) which implements a Golomb-Rice coding as defined in the CCSDS recommended standard 121.0-B-3. Users are strongly encouraged to test that their software applications and data processing chain can handle this new compression method. To handle CCSDS compressed fields from 48r1 with ecCodes, version 2.28.0 or newer is recommended. For a discussion of available GRIB packing methods and the use of compression algorithms see the Technical Memo Impact of GRIB compression on weather forecast data and data-handling applications. |
For gridded 48r1 model output in GRIB 2 format the packing type will change as follows:
GRIB 2 | ecCodes key | 47r3 | 48r1 |
---|---|---|---|
10-11 | dataRepresentationTemplateNumber | 0 (simple packing) | 42 (CCSDS compression) |
packingType | grid_simple | grid_ccsds |
If CCSDS compression is not desired when retrieving gridded GRIB 2 fields from MARS or dissemination, simple packing can be requested with keyword
packing = si
Using ecCodes, already retrieved CCSDS compressed fields can be converted to other packing types. This is how you can convert all messages in file ccsds.grib which have grid_ccsds as their packingType, and only those, to use grid_simple packing, i.e. what we used before 48r1:
grib_set -r -w packingType=grid_ccsds -s packingType=grid_simple ccsds.grib grid_simple.grib
To compare the statistics of the fields before and after the conversion, the following command could be used:
grib_ls -n statistics ccsds.grib grid_simple.grib
Software
The software packages listed below are recommended for full support for all 48r1 parameters and the new CCSDS compression.
ecCodes 2.28.0
Magics 4.13.0
Metview 5.18.0
On the ECMWF Atos system these packages can be loaded via the module ecmwf-toolbox/2023.01.0.0. Before the implementation software versions compatible with 48r1 will be made the default on ECMWF platforms.
Users are strongly encouraged to test their software applications and data processing chain with the new versions of the various software packages before this change.
IFS Cycle 48r1 beta test data is available from MARS with E-suite experiment version (expver) 0078 (MARS keywords EXPVER=0078, CLASS=OD):
New streams for the extended-range ensemble
Only users registered with access to MARS will be able to access these test data sets. The data should not be used for operational forecasting. Please report any problems you find with this data via the ECMWF Support Portal.
Webinar "Introduction to Cycle 48r1" | |
---|---|
|