This knowledge base article shows you how to calculate daily total precipitation using ERA-Interim data. If you just want monthly means, then you can simply download it from http://apps.ecmwf.int/datasets/data/interim-mdfa/levtype=sfc/.
Before you continue, make sure that you read through knowledge base articles listed below:
You are also supposed to know how to work with Python under Linux, in particular, how to install a package using pip. You are recommended to use the latest release of packages listed here:
#!/usr/bin/env python """ Save as get-tp.py, then run "python get-tp.py". Input file : None Output file: tp_20180101.nc """ from ecmwfapi import ECMWFDataServer server = ECMWFDataServer() server.retrieve({ "class" : "ei", "dataset": "interim", "date" : "2018-01-01", "expver" : "1", "grid" : "0.75/0.75", "levtype": "sfc", "param" : "228.128", "step" : "12", "stream" : "oper", "time" : "00:00:00/12:00:00", "type" : "fc", "format" : "netcdf", "target" : "tp_20180101.nc", }) |
Run a second script to calculate daily total precipitation. All it does is to add up the two values for 00-12 UTC and 12 - 24 UTC for the given day. Notice for simplicity, data in the output NetCDF file is unpacked. You may want to pack the data to save some disk spaces.
#!/usr/bin/env python """ Save as file calculate-daily-tp.py and run "python calculate-daily-tp.py". Input file : tp_20180101.nc Output file: daily-tp_20180101.nc """ import time, sys from datetime import datetime, timedelta from netCDF4 import Dataset, date2num, num2date import numpy as np day = 20180101 f_in = 'tp_%d.nc' % day f_out = 'daily-tp_%d.nc' % day d = datetime.strptime(str(day), '%Y%m%d') time_needed = [d + timedelta(hours = 12), d + timedelta(days = 1)] with Dataset(f_in) as ds_src: var_time = ds_src.variables['time'] time_avail = num2date(var_time[:], var_time.units, calendar = var_time.calendar) indices = [] for tm in time_needed: a = np.where(time_avail == tm)[0] if len(a) == 0: sys.stderr.write('Error: precipitation data is missing/incomplete - %s!\n' % tm.strftime('%Y%m%d %H:%M:%S')) sys.exit(200) else: print('Found %s' % tm.strftime('%Y%m%d %H:%M:%S')) indices.append(a[0]) var_tp = ds_src.variables['tp'] tp_values_set = False for idx in indices: if not tp_values_set: data = var_tp[idx, :, :] tp_values_set = True else: data += var_tp[idx, :, :] with Dataset(f_out, mode = 'w', format = 'NETCDF3_64BIT_OFFSET') as ds_dest: # Dimensions for name in ['latitude', 'longitude']: dim_src = ds_src.dimensions[name] ds_dest.createDimension(name, dim_src.size) var_src = ds_src.variables[name] var_dest = ds_dest.createVariable(name, var_src.datatype, (name,)) var_dest[:] = var_src[:] var_dest.setncattr('units', var_src.units) var_dest.setncattr('long_name', var_src.long_name) ds_dest.createDimension('time', None) var = ds_dest.createVariable('time', np.int32, ('time',)) time_units = 'hours since 1900-01-01 00:00:00' time_cal = 'gregorian' var[:] = date2num([d], units = time_units, calendar = time_cal) var.setncattr('units', time_units) var.setncattr('long_name', 'time') var.setncattr('calendar', time_cal) var = ds_dest.createVariable(var_tp.name, np.double, var_tp.dimensions) var[0, :, :] = data #var.units = units var.setncattr('units', var_tp.units) var.setncattr('long_name', var_tp.long_name) # Attributes ds_dest.setncattr('Conventions', 'CF-1.6') ds_dest.setncattr('history', '%s %s' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), ' '.join(time.tzname))) print('Done! Daily total precipitation saved in %s' % f_out) |
You may also want to use visual panels to communicate related information, tips or things users need to be aware of. |
Related articles appear here based on the labels you select. Click to edit the macro and add or change labels.
|